Imagining how “synthetic topology” could reform carbon dioxide catalysis

Solid-state physicists and materials chemists are in excellent “shape” to expand and accelerate their explorations of the science of topological materials for a wide range of possible applications. In particular, exploiting the reactivity of electrons at the surface of topological solids will prove to be of considerable interest in catalysis, whether a heterogeneous reaction is driven by heat, electricity, light or a combination thereof. See full article at Advanced Science News.

Posted in News | Leave a comment

Dual aluminum-nitrogen battery that stores energy and fixes nitrogen

A recent report described an innovative rechargeable metal-nitrogen battery based on a graphene-supported palladium cathode and a polished aluminum anode interfaced with an ionic liquid electrolyte comprised of aluminum chloride/1-butyl-3-methylimidazolium chloride. Remarkably, the aluminum-nitrogen battery was demonstrated to serve the dual purpose of both storing and retrieving energy and having the ability to fix the nitrogen stream as ammonia. See full article at Advanced Science News.

Posted in News | Leave a comment

What is the carbon footprint of carbon capture and utilization?

Capturing carbon dioxide and sequestering or converting it into sustainable chemicals and fuels can significantly help in mitigating emissions as we transition away from fossil fuels. But what exactly is the carbon footprint of such a process from cradle-to-grave? How much carbon dioxide feedstock needs to be captured to satisfy the demand for chemicals and fuels? And what is the energy demand of the CO2 capture and utilization processes? Geoff explores these pressing questions in his latest for Advanced Science News.

Posted in News | Leave a comment

Celebrating the 77th birthday of “the father of Nanochemistry”—Geoffery Ozin, and his colorful career

To celebrate his 77th birthday, ASN reached out to the extraordinary Nanochemist at the University of Toronto, “the father of Nanochemistry”, Geoffery Ozin, to discuss his colorful career, current projects, and plans for the future. The interview is summarized with the title “small materials with a big impact”.
See full article at Advanced Science News.

Posted in Featured News | Leave a comment

Congratulations to Professor Ozin and co-authors on their article published in Energy & Environmental Science

Tailoring the performance of a photocatalyst by design is challenge in the field of renewable synthetic fuels. In this work, the authors demonstrate how polymorphic heterostructures comprised of two indium oxide based photocatalysts, with distinct structures yet continuously adjustable fractions of the same composition, enable optimization of the activity and selectivity of CO2 hydrogenation to CO and CH3OH. Interfaces formed between cubic and rhombohedral polymorphs with distinct electronic band structures, vacancies, and defects enable the charge generation, separation, and lifetimes of photogenerated electron-hole pairs to be finely tuned.
See full article at Energy and Environmental Science.

Posted in News | Leave a comment

Congratulations to Xiaoliang Yan and co-authors on the publication of their communication article in Small

1D silicon‐based nanomaterials, renowned for their unique chemical and physical properties, have enabled the development of numerous advanced materials and biomedical technologies. In this work, the authors demonstrate a flash solid–solid (FSS) process for the synthesis of silicon oxide nanorods that can be completed within seconds. The innovative features of this FSS process include its simplicity, speed, and exclusive use of solid precursors, comprising hydrogen‐terminated silicon nanosheets and a metal nitrate catalyst.
See full article at Small.

Posted in News | Leave a comment

Congratulations Yuchan Dong and co-authors on their recently published Chemical Society Review paper, celebrating Geoff’s 77th birthday and winning the front cover display of one of the highest impact factor journals in the field of chemistry

Powering the planet with sunlight-driven CO2 chemistry is an especially attractive approach for sustainable development. In this Tutorial Review, Yuchan Dong and co-authors highlight the multidisciplinary character of photocatalytic CO2 reduction studies from the perspective of materials chemistry, science and engineering, computational modelling, reactor engineering to process development. It provides a full picture of all the essential components for scaling laboratory research to pilot demonstration to implementation in industry, one-step closer to the vision of the solar CO2 refinery.
See full article at Chemical Society Review.

Posted in Featured News, News | Leave a comment

Congratulations Young Li and co-authors on their recently published paper

In this work, Young Li and co-authors report how a conformal coating of the well-documented catalyst promotor barium on the surface of palladium-decorated tungsten oxide nanowires was developed using a solution‐phase atomic layer deposition process. At just 0.2 atomic percent barium, a significant promotion of the light‐assisted activity of the reverse water gas shirt reaction was observed.
See full article at Chemistry-A European Journal.

Posted in Uncategorized | Leave a comment

Congratulations to the authors of “Solution–Liquid–Solid Growth and Catalytic Applications of Silica Nanorod Arrays

As an analogue to the vapor–liquid–solid process, the solution–liquid–solid (SLS) method offers a mild solution‐phase route to colloidal 1D nanostructures with controlled sizes, compositions, and properties. Direct growth of 1D nanostructure arrays through SLS processes remains in its infancy. This study shows that SLS processes are also suitable for the growth of nanorod arrays on the substrate.
See full article at Advanced Science.

Posted in Uncategorized | Leave a comment

The three colors of hydrogen

Everybody knows that H2, the archetype diatomic molecule, is a colorless gas. In the field of renewable energy however, hydrogen gas is now considered as either “grey”, “blue”, or “green”. This color code descriptor has arisen in order to differentiate hydrogen according to its source, in particular to distinguish hydrogen derived from fossil sources from that derived from renewable energy. Today, exciting steps are being made towards realizing this vision of a hydrogen-powered zero emission infrastructure. See full article at Advanced Science News.

Posted in Uncategorized | Leave a comment